www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - schiefsymmetrische Matrix
schiefsymmetrische Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schiefsymmetrische Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:27 Mo 01.02.2010
Autor: chipbit

Aufgabe
Sei A eine invertierbare quadratische Matrix. Beweise: Ist A schiefsymmetrisch, so ist auch [mm] A^{-1} [/mm] schiefsymmetrisch.

Hallo, ich habe mich an diesem Beweis versucht, bin mir aber nicht sicher ob der so richtig ist.
Also: A ist invertierbar, dann gilt [mm] AA^{-1}=E_n [/mm]
und A ist schiefsymmetrisch, also gilt ferner [mm] A=-A^T [/mm]
zu zeigen: [mm] A^{-1}=-{(A^{-1})}^T [/mm]
mein Ansatz wäre dann:
[mm] -{(AA^{-1})}^T=(E_n)^T [/mm]    geht das?
[mm] \gdw -({(A^{-1})}^TA^T)=(E_n)^T [/mm]
[mm] \gdw (-(A^{-1})^T)(-A^T)=(E_n)^T [/mm]
[mm] \gdw (-(A^{-1})^T)(A)=(E_n) [/mm]     wegen der Schiefsymmetrie von A, kann ich das aber alles mit der Einheitsmatrix überhaupt machen?
[mm] \gdw (-(A^{-1})^T)(AA^{-1})=(E_n)A^{-1} [/mm]  n.V. (oben)
[mm] \gdw (-(A^{-1})^T)=A^{-1} [/mm]  q.e.d

        
Bezug
schiefsymmetrische Matrix: Feedback
Status: (Antwort) fertig Status 
Datum: 02:09 Mo 01.02.2010
Autor: kalkulator


> Sei A eine invertierbare quadratische Matrix. Beweise: Ist
> A schiefsymmetrisch, so ist auch [mm]A^{-1}[/mm] schiefsymmetrisch.
>  Hallo, ich habe mich an diesem Beweis versucht, bin mir
> aber nicht sicher ob der so richtig ist.
>  Also: A ist invertierbar, dann gilt [mm]AA^{-1}=E_n[/mm]
>  und A ist schiefsymmetrisch, also gilt ferner [mm]A=-A^T[/mm]
>  zu zeigen: [mm]A^{-1}=-{(A^{-1})}^T[/mm]
>  mein Ansatz wäre dann:
> [mm]-{(AA^{-1})}^T=(E_n)^T[/mm]    geht das?
>  [mm]\gdw -({(A^{-1})}^TA^T)=(E_n)^T[/mm]
>  [mm]\gdw (-(A^{-1})^T)(-A^T)=(E_n)^T[/mm]
>  
> [mm]\gdw (-(A^{-1})^T)(A)=(E_n)[/mm]     wegen der Schiefsymmetrie
> von A, kann ich das aber alles mit der Einheitsmatrix
> überhaupt machen?
>  [mm]\gdw (-(A^{-1})^T)(AA^{-1})=(E_n)A^{-1}[/mm]  n.V. (oben)
>  [mm]\gdw (-(A^{-1})^T)=A^{-1}[/mm]  q.e.d


Dein Ansatz hat vermutlich einen Vorzeichenfehler:
Die Aussage [mm]-{(AA^{-1})}^T=(E_n)^T[/mm] heißt ja, dass Die Einheitsmatrix gleich der Einheitsmatrix mal minus eins ist, und das kann nicht sein. Aber der Beweis funktioniert trotzdem, denn von Zeile 2 auf Zeile 3 hast Du das Minus zweimal in die Klammer multipliziert. Einmal würde auch reichen... soweit ich es beurteilen kann, fressen sich die beiden Fehler gegenseitig weg, so dass der Beweis stimmt, wenn du sie beide korrigierst.
Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]