www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - transitive/freie Operation
transitive/freie Operation < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

transitive/freie Operation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:20 Di 09.12.2008
Autor: stinkestern

Aufgabe
Eine Operation einer Gruppe G auf einer Menge X heiße frei, wenn für alle [mm]x \in X[/mm] der Stabilisator [mm]G_x[/mm] trivial ist, i.e. [mm]G_x = \{e \}[/mm].
Sei G eine endliche Gruppe und X eine endliche Menge [mm]( \not= \emptyset )[/mm], auf der G operiert. Betrachte die folgenden Aussagen:
(a) Die Operation ist transitiv.
(b) Die Operation ist frei.
(c) [mm]|X|=|G|[/mm].
(d) [mm]|X| \ge |G|[/mm].
Gelten die folgenden Implikationen?

(a) und (b) => (c)

(b) und (c) => (a)

(a) und (d) => (c)

Ich kann mir leider unter den Begriffen "frei" und "transitiv" noch nicht richtig etwas vorstellen. Zuerst habe ich gedacht, dass transitiv so was ähnliches wie surjektiv ist, aber ich glaube, das triffts noch nicht ganz, oder?
In vielen Büchern habe ich gelesen, dass es bei einer transitiven Operation nur eine Bahn gibt, aber was sagt mir das? In der Übung haben wir gelernt, dass transitiv salopp gesagt bedeutet, dass "jedes Element auf jedes geschickt werden kann" wie z.b. bei der Drehgruppe des Tetraeders und der Menge der Seiten und Kanten.  
Kann mir jemand helfen, das zu einem Gesamtbild zusammenzufügen?

Bedeutet "frei", dass nur die Identität ein Element aus der Menge X auf sich selbst abbildet?


        
Bezug
transitive/freie Operation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 16.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]