www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "VK 60: Analysis" - Übungsserie 1, Aufgabe 1
Übungsserie 1, Aufgabe 1 < VK 60: Ana < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übungsserie 1, Aufgabe 1: Aufgabe 1
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 10:46 So 29.01.2012
Autor: Blackwolf1990

Aufgabe
Aufgabe I-1: Zeigen Sie mittels vollständiger Induktion die Bernoulli'sche Ungleichung:

[mm] (1+x)^{n} [/mm] > 1 + nx      für n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 2, x [mm] \in \IR [/mm] , x [mm] \neq [/mm] 0, x > -1

Dies ist eine Übungsaufgabe für den Vorkurs "Analysis", die von allen Teilnehmern (und Interessenten) gelöst werden kann.

Quelle: "Grundkurs Analysis 1", Klaus Fritzsche.

        
Bezug
Übungsserie 1, Aufgabe 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 So 29.01.2012
Autor: Diophant

Hallo,

sorry, habe den Zweck der Frage nicht gesehen.

Gruß, Diophant

Bezug
                
Bezug
Übungsserie 1, Aufgabe 1: Übungsaufgaben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 So 29.01.2012
Autor: Infinit

Hallo diophant,
ich bin gestern auch auf diese Aufgaben reingefallen. Es sind Übungsaufgaben zu einem Vorkurs, die aber unglücklicherweise als Fragen charakterisiert werden. Felix hat sie dann zu Aufgaben umgewandelt.
Viele Grüße und einen schönen Sonntag,
Infinit


Bezug
        
Bezug
Übungsserie 1, Aufgabe 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Sa 04.02.2012
Autor: Kimmel

IA:

[mm] n = 2 [/mm]

[mm](1 + x)^2 > 1 + 2x [/mm]

[mm]<=> 1 + 2x + x^2 > 1 + 2x [/mm]

Passt.

IS:

Die Behauptung gelte für ein n (Ist dieser Satz richtig formuliert)

[mm] " n => n + 1" \begin{matrix} (1+x)^{n+1}&=& (1+x)^n \cdot (1+x) \\ \ & \overbrace{>}^{=IV}& (1 + nx) (1 + x) \\ \ &=& 1 + x + nx + nx^2 \\ \ &>& 1 + nx + x \\ \ &=& 1 + (n+1)x \qquad \Box \end{matrix} [/mm]



Bezug
                
Bezug
Übungsserie 1, Aufgabe 1: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:25 So 05.02.2012
Autor: Blackwolf1990

Deine Lösung ist richtig ! =) Nur zwei Anmerkungen:

> IS:
>  
> Die Behauptung gelte für ein n (Ist dieser Satz richtig
> formuliert)

Der Satz für den Induktionsschritt ist auch ok, schreibe aber besser "für eine natürliche Zahl n"

>  
> [mm] " n => n + 1" \begin{matrix} (1+x)^{n+1}&=& (1+x)^n \cdot (1+x) \\ \ & =& n^2 + 2n + 1 \\ \ & \overbrace{>}^{=IV}& (1 + nx) (1 + x) \\ \ &=& 1 + x + nx + nx^2 \\ \ &>& 1 + nx + x \\ \ &=& 1 + (n+1)x \qquad \Box \end{matrix} [/mm]
>  
>  

Was bedeutet die Zeile = [mm] n^2 [/mm] + 2n + 1 ? (In dem Zusammenhang) Ohne diese Zeile sind deine Umformungen korrekt. VG


Bezug
                        
Bezug
Übungsserie 1, Aufgabe 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 So 05.02.2012
Autor: Kimmel

Äh, ja, danke

Kommt davon, wenn man das auf einem Schmierblatt macht...

Bezug
                                
Bezug
Übungsserie 1, Aufgabe 1: Passiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 So 05.02.2012
Autor: Blackwolf1990

Passiert nunmal. Mach ich genauso, deswegen kenn ich solche Schusselfehler nur zu gut ! ;-)
VG Blacki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]