www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - wie zeigt man dieses
wie zeigt man dieses < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wie zeigt man dieses: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mi 14.03.2007
Autor: nieselfriem

Aufgabe
Zeigen Sie, dass für alle [mm] x,y\ge0 [/mm] die ungleichung [mm] x+y\ge\wurzel{4*xy} [/mm] gilt.

Nun habe ich die gleichung umgeformt und habe nun raus.
[mm] x^2+2*xy+y^2\ge4xy [/mm]
und wie nun weiter. Mit einsetzen ist da ja nicht.Sollte man dort ein induktionsbeweis ansetzen?

Danke für den hinweis

        
Bezug
wie zeigt man dieses: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mi 14.03.2007
Autor: smarty

Hi,

> Zeigen Sie, dass für alle [mm]x,y\ge0[/mm] die ungleichung
> [mm]x+y\ge\wurzel{4*xy}[/mm] gilt.
>  Nun habe ich die gleichung umgeformt und habe nun raus.
>  [mm]x^2+2*xy+y^2\ge4xy[/mm]

subtrahiere doch einfach 4xy, dann steht links [mm] (x-y)^2 [/mm] und das ist immer größer gleich 0 - ergo handelt es sich um eine wahre Aussage.

Gruß
Smarty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]