www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - windschiefe Geraden
windschiefe Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

windschiefe Geraden: Frage
Status: (Frage) beantwortet Status 
Datum: 23:21 So 05.06.2005
Autor: b.BeautY

Ich hoffe mir kann jemand erklären wie man die Punkte bestimmen kann die sich bei windschiefen Geraden am nächsten liegen, für deren Abstand voneinander also gilt:

[mm] d=(\vec{p}- \vec{q})* \bruch{\vec{u}x\vec{v}}{|\vec{u}x\vec{v}|} [/mm]

p und q sind die Ortsvektoren, u und v linear unabhängige Richtungsvektoren zweier Geraden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
windschiefe Geraden: Tipps
Status: (Antwort) fertig Status 
Datum: 08:37 Mo 06.06.2005
Autor: informix

Hallo b.BeautY,
[willkommenmr]
Freust du dich über eine nette Anrede? Wir auch!

> Ich hoffe mir kann jemand erklären wie man die Punkte
> bestimmen kann die sich bei windschiefen Geraden am
> nächsten liegen, für deren Abstand voneinander also gilt:
>  
> [mm]d=(\vec{p}- \vec{q})* \bruch{\vec{u}\*\vec{v}}{|\vec{u}\*\vec{v}|}[/mm]
>  
> p und q sind die Ortsvektoren, u und v linear unabhängige
> Richtungsvektoren zweier Geraden.
>  

Man stellt eine Ebene E auf, die parallel zu einer der Geraden (h) verläuft und die andere Gerade (g) enthält.
Dann hat jeder Punkt B auf h den gesuchten Abstand von der Ebene E. Der Normalenvektor von E ist zugleich der Vektor, der in Richtung des Abstandes zeigt, d.h. er steht auf beiden Geraden senkrecht

Um nun die Punkte auf beiden Geraden zu finden, die diesen kürzesten Abstand repräsentieren, verfährt man so:
Die Ebene E', die g enthält und in Richtung des Abstandes zeigt, schneidet die Gerade h im Punkt [mm] P_2. [/mm]
Den zugehörigen Punkt [mm] P_1 [/mm] erhält man als Schnittpunkt der Lotgeraden $l: [mm] \vec{x}=\vec{p_1} [/mm] + [mm] r\vec{n}_E$ [/mm] mit der Gerade g.

siehe auch: MBAbstandsberechnungen in R3, MBNormalenform in der MBMatheBank

Kommst du jetzt alleine weiter?


Bezug
                
Bezug
windschiefe Geraden: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Fr 04.01.2008
Autor: hwj

Die Gleichung für die Lotgerade l muss heissen
l: x = p2 + r*nE
Man erhält aber p1 schon aus dem LGS des Schnitts von E' mit h (ausprobieren).

Bezug
                
Bezug
windschiefe Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Fr 10.06.2005
Autor: b.BeautY

Guten Tag,
habs verstanden, vielen Dank Informix.
Ich hab in der Datenbak auch nach Beiträgen zu dem Thema gesucht, aber nich das richtige gefunden.

Gruß beauty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]