www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Übertragungsfunktion
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Übertragungsfunktion

Übertragungsfunktion


Das Übertragungsverhalten eines Systems kann durch eine lineare Differenzialgleichung beschrieben werden:


$ a_nv^{(n)}+...+a_1\dot v+a_0v=b_0u+b_1\dot u+...+b_mu^{(m)} $


die Laplace-transformierte Gleichung lautet:


$ V(s)\left[a_ns^n+...+a_1s+a_0\right]=U(s)\left[b_0+b_1s+...+b_ms^m\right] $



Der Quotient  $ \bruch{V(s)}{U(s)} $  heißt Übertragungsfunktion G(s)



$ G(s)=\bruch{V(s)}{U(s)}=\bruch{b_ms^m+...+b_1s+b_0}{a_ns^n+...+a_1s+a_0}=\bruch{Z(s)}{N(s)} $



Z(s): Zählerpolynom in s
N(s): Nennerpolynom in s



technisch realisierbar sind Systeme in denen $ Z(s)=m\le n=N(s) $

Im Sonderfall m=n lässt sich durch Polynomdivision ein konstanter Anteil abspalten, so dass eine echt gebrochen rationale Funktion


$ G(s)=\bruch{Z_n(s)}{N_n(s)}=\bruch{Z_{n-1}(s)}{N_n(s)}+c=G_{n-1}(s)+c $



Eine wichtige Beziehung besteht zwischen der Übertragungs- und der Gewichtsfunktion $ g(t) $


Es ist:


$ V(s)=U(s)\cdot{}G(s)=\mathcal{L}\{\delta(t)\}G(s)=G(s)=\mathcal{L}\{g(t)\} $


und daher:

$ g(t)=\mathcal{L}^{-1}\{G(s)\} $





zurück

Erstellt: Fr 03.11.2006 von Herby
Letzte Änderung: Fr 16.02.2007 um 13:21 von Herby
Weitere Autoren: Loddar
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]